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‘ I
I.  Intro duc tion

However difficult the fundamental problems of theoretical computer science

ma~ seem, there Is very little to suggest that they are anything more than

I 
knotty combinatorial problems . So, when we loo k for reasons for our inab i l ity

to reso l ve P • NP and rela ted ques tions , we most likely find them dealing wi th

a lac k of understanding of particular computational problems and their lower

bounds. This is the sense of Hopcroft’s prediction : “ . . .within the next five
1 years, nobody wil l prove that any of these problems takes more than let’s say

n2 time. I think that’s a reasona bly safe conjecture and I t also I l l u s trates

how little we know about lower bounds. ” [MT]. Hopcroft’s guess i s uncann y

In Its accuracy -- after six years and considerable effort by many researchers,

his conjecture remains unchallanged .

The results in this  paper offer a possible explanation for our failure

to resolve these problems . Roughly, the main result of the sequel links

lower bounds and a branch of mathematical logic known as model theory. In par-

ti cular , we prove that the existence of nonpolynomial lower bounds is equiv-

alen t to the existence of nonstandard models of a sizabl e fragment of

1. ari thmetic. Since these are deep logical issues and there are very few tech-

niques for handling them, and since the nonstandard models in question are non-

effective, it seems plausibl e that this linking of compl exity theory and logic

L explains our failure to obtain nontrivial l ower bounds.

1• One of the aims of mathematical logic is to clarify the relation between

1. mathematical theories and their interpretations -- or models. In logic , a

1 theory is simply a collection of statements and all of their logical consequences,

that is , a collec tion of (nonlogical) axioms closed under the relation “ } — “ .

[
[

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
a-. - - ’ -- - .-- . ’- . — ._ .___

~~_ __~ _ _ _ ._ _ , _  --—.- _ - - -_ - - -. —-—_ — _  - - - . .--- ---- - ‘ - -. -.



— . - - -
~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

.‘.-.—

~~~~ ~~‘ 1
i 

2

Models are the structures In which theories are interpreted.

Plane geometry is such a mathematica l theory. In antiquity , the relation

I between Euclidean geometry and its models was considered obvious , and this

Pelationship was even further clarified by the arithmetizatIon of geometry.

I It was therefore a shock to the mathematical world when , in 1868, Bel tram i

announced that geometry can have more than one model -- a very strange one
I at that since in his model the parallel postulate Is false. Since the parallel

j postulate Is certainly true In the standard model of geometry, its negation is

not provable -- the parallel postulate is consistent with Euclidean geometry.

J On the other hand , since the negation of the parallel postulate is also true

in a (nonstandard) model , Its negation (i.e., the parallel postulate itself)

1 Is not provable. More recently, Cohen [Co) proved that both the ax iom of

choice and generalized continuum hypothesis cannot be proved from the remain-

ing axioms of set theory -- Cohen introduced a radically new concept called
7. 

forcing to construct nonstandard models with prescribed properties. The first

such result for formal arithmetic was obtai ned by Paris and Harrington [PH).

1. They proved that a modest generalization of the finite Ramsey theorem of

combinatorics is not decided by Peano arithmetic. Sheperdson [Sh] discusses

the unprovability of induction schemes and such statements as Fermat’s Last

[ Theorem, for the case n 2 3, fro m weak fragments of ar it hmeti c.

Thi s property of statements of a theory Is cal le d inde pendence: a

statement Is independent from a theory I If the statement cannot be proved

or disproved wi thin I. Of course, Godel proved that every sufficiently

powerful theory must leave infinitely many statements unresolved in this way.

j  In current terminology, however , a qualitative distinction is usually drawn

between formal undecidab ility and Interesting independence theorems. In the

_-
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‘ I
I Godel-style formal undecidability theorems, one explicitly formulates a

diagonalizing statement and using the properties of the axiom system in

I question, encodes that statement as a formal statement of the theory. In

I 
independence results whatever diagonal i zation is present in the proof, is

well-hidden . One begins with a fixed (true) formal statement -- whose

I formalization has not been obtained wi th a knowledge of the axioms to be used --

and using model theoretic techniques, shows an interpretation in which the

j statement fails to hold (cf. [DL) for a survey of these results). Therefore,

- 
independence resul ts seem to exh ib it the foll owing character i stics.

1 (1) There is no direct diagonalization . That is, the statements

I whose independence is to be proved do not refer explicitly to,

say, halting computations.

J (2) The independent statements are interesting in their own right.

In set theory, for instance , independent statements often rep-

resent useful infinitary combinatorial principles .

• (3) The independence of a statement is sensitive to the underlying

theory. In forma l undec idabi l ity resu l ts one can add additional

L axioms to the theory, encode the independen t statement for the

new theory and retain its undecidability . In interesting inde—

1. pendent theorems, however , the independence of the statement from

a set of axioms characterizes the power of the axioms ; changing

the underlying theory by adding more axioms decides the statement

in the expanded theory.

Except for the discussion of Hopcroft and Hartmanis [HH) and the results

1.. of Lipton [Li], we are aware of no other results that relate the basic issues

of compl exity theory to independence or nonstandard models. The impact of



- -.
~~~~~~~- - — ~~~~~~~~~~~~~~~~~ 

L . .-

i
I our results Is that proving lower bounds on certain co~~utatIonal problems

Is as hard as showing that a certain true sentence is independent from a

I powerful theory. In particular , we show tha t for certain S, S ~ P (i.e. , S

is intractible) exactly when a particular true sentence A5 rela ted to S mus t

be false In a nonstandard model of arithmetic. Furthermore this model must

be noneffective. The various proofs of this result yield existential proof

techniques for showing that problems are solvable in polynomIal time. An

Interesting aspect of this result is that It apparently does not generalize

much beyond polynomial time computation . That is , it does not relativlze in

any obvious way, nor is it possible to formally substitute many other time

classes for P in the statement of the theorem.
1..

II. Definitions

The definitions from complexity theory are standard [BL). P denotes the

set of problems solvable in deterministic polynomial time. NP denotes the

problems solvable in nondeterministic polynomial time, and coNP denotes the

set of problems whose complements lie wi thin NP. The Inclusions

L P NP n coNP NP

are obvious . Although it is widely believed that both inclusions are strict ,

the results to be quoted below are interesting even if , say, P NP ~, coNP.

We will return to this point later.
4.

Our logical notation is standard (see [Ba)). Our language Is any

I. acceptable first order language with arithmetical symbols and quality . We

L use V for universal quantification and 3 for existential quantification .

Among other symbols, x,y,z are used for variables, and the infix symbols

4- 
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+ and ~ and •- are used for addition and multip lication and subtraction , suc

and pred for the successor and predecessor functions , and 0 for the constant

I zero .

‘ 
Let I be a set of formulas , then 1 f- ~ ‘ indicates that ~ is a logical

consequence of 1. A theory is simply the set of formulas which are logical

consequences of 1. Since the set of theorems of the theory is uniquely char-

acterized by 1, we identify the two. A theory is consistent if 0=1 is not

L among its theorems. A formula ~ ‘ is independent of the theory if neither ~‘

nor ~ is a theorem. If I is a theory, T+~ denotes the result of adjoining

~ as an axiom. Thus ~ is independent of I if both T+q~ and T+’~.4 are consistent.

A model of a theory I is an interpretation of the individuals , functions and

relations of the underlying language such that each ~ I is true. A set

of formulas has a model If and only if it is consistent. In addition to this

basic fact , we will use the

Compactness Theorem {BS]: Let I be a set of formulas. I has a model iff

every finite subset of I has a model .

We will dea l wi th a subtheory of (complete ) arithmetic. Of course the

Standard model c~f this theory is the integers N = {O,1,2,...} with the remain-

r ing symbols interpreted in the obvious way . Any model *N (with + interpreted

as •+, etc.) which is not Isomorphic to N is said to be nonstandard. Since

*N may be uncountable it Is not surprising that nonstandard models of

arithmetic can exist. Skolem [SK), however, showed that countable non-

L standard models are possible. We will discuss these more fully in Section IV .

For now it will be sufficient to note that if *N is a countable nonstanda rd

model of arithmetic *N...N consists of nonstandard objects which are infinite

I relative to N; i.e., if a ~ *p4_N, a -. n, for each M c N. Hencefor th

I
— —
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I *N (or *N0,*N 1 ) always denotes such a model .

We will now define a particular theory PT. The language for PT Inc l udes

I symbols for all the functions and predicates which are countable In poly-

J nomial time . The axioms of PT are all true sentences of the form

(3x)(vy)A(x,y),

J where A Is quantifier-free (as usual x and y may denote several occurrences

of bound variables). A formul~ with such a quantifier is cal l ed an EA formula.

1 Similarly an AE formula contains the quantifier prefix V3 . The theory PT

Is quite powerful . It Inc l udes the theory studied by Skolem [Ski] -- which

he felt represented an important part of constructive number theory. Hllbert ,

I Herbrand , Krelsel and Scott [Sc) have also studied systems much weaker than

PT (ShJ . Perhaps more relevant to our discussion , the PV system of Cook [Ckl ,

Ck2] Is also weaker than PT. The axioms of PT inc l ude all the recurs i ve

• 
- equations that define the functions and predicates included in PT. Moreover ,

PT contains the induction axiom

A ( O) A ( Vx ) [A(x)  .
~~ A(x+l)] .~~ (V y)A(y). (*)

where A is a quantifier-free. To see this just note that (*) is equivalent

to

(3x)(yy){’~A(O) v ( A( x )  A 
~~(x+ l))~ A(y)}.

For model-theoretic purposes the axioms PT can be replaced by their universal

members without changing the degree of the theory: both axiomatlzatlons are

equivalent. The theory which Skolem studied can he formed by (*) and the

1. recursive definitions of the functions successor, addition , multiplIcation ,

L subtractIon and integer division. Cook’s PV theory is related to PT, but

j notice that PT Is not even recursively enumerable (Inclusion of an axiom

I depends upon Its truth), so that PT is a vastly more powerful theory. Indeed

~i E
-i--jill
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I It Is not obvious how to deal with independence from PT using other than

model-theoretic techniques -- since PT is not recursively enumberable , it

• Is not clear how diagonalizatlon can work at all~

• J
Our main result Is that the intractability of any S ~. NP n coNP i s

equi valent to the existence of a nonstandard model for PT in which a certain

sentence A5, related to S , fails; i.e., PT + is a consistent theory.

Let S be fixed and let A(x ,y), 8(x,y) be defined as follows :

(3y )A(x ,y) 1ff x ~ S.

and

(3y(8(x,y) 1ff x t’ S.

Now form A5(A B ) :

( V x )[( 3y ) A(x ,y) v (3z)B(x,z) ]

Notice that, when interpreted in N , N since in N

~~~~ ( V x ) ( xcS~ x i S) .

[ Theorem. Let S ~ NP n coMP. Then the following statements are equivalent :

I: 
(1) S c P .

- - (2) PT 
~ 

\5(A,8), for some A,B In the lan gua ge of PT .

Proof of (fl ~ ’ j .?J.: If S c P, there are polynomial time predicates A ,B so

E that x ~ S 1ff A(x) and x ~ S 1ff B ( x ) .

Hence

i t’  

_ _ _ _ _ _ _ _ _illJ
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I (Vx)[(3y)A(x~ v

is an ax iom of PT .
0

Proof of (2) ~~~ (1):

We will present three proofs of the converse. What is needed in all three

I cases is to pass from PT F- 
~~~~~~~ 

to a true formula

~~~1 m
• (V x )(  

~/ 
A(x ,f1 (x ) )  v V B (x ,g1 ( x ) ) )

‘p 1=1 1— 1
J

where the terms f1,g1 are in the language of PT. Hence x c S is decided by

checking

n
V A(xJ~( x ) )
1=1

and

I V B(x ,g1 (x ) )  (4)
1=1

~~. If (3) is true x c S and if (4) is true x ~ S, and since all  terms and

predicates are polynomial time computable , S c P.

Proof A:

Let (Vx)(3y)r(x,y) denote As(A ,B), so that PT F (yx)(3y)r(x,y),

- and suppose that

PT Fi (Vx)(y
1
r(x, f 1(x) ) ,  n=1,2,...

L.A 
_ _ _ _ _ _ _ _ _ _ _

-
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I
i where f1,f2... are terms of PT. Define the theory T* by

I T* = PT + “..r(c ,f1 ( c ) )  . .+ ‘~.r(c,f~( c ) )

J where c is a new cons tan t, not appearing in PT. We first claim that 1* is

consistent, for if not

j
PT + %r(c ,f1(c) )  +. ..+ ~r(c,f~(c ))  F 0=1

I.

by compactness and hence

n
PT F V r(c1f~(c ) )

1=1

• which implies
a — m

PT F- (Yx) V r(x,f1 (x ) ) ,
i=1

establishing the claim. Choose any model M for T* an d let M
~ 

be the submodel

generated by c. Since PT is open , Mc ~= PT and thus Mc ~= (3y)r(c ,y). But

by our choice of c, Mc 1= (Vy)’~r(c,y). S ~ P now follows as descri bed above.

Proof B:

We need to recall the follow ing fact, often called the Kleene-Herbrand-

1. Gentzen Theorem [Ki].

- 
Lenina If I is a consistent collection of EA formulas and T F- ~fx ) (3y )~(x,y)

where q~ is open , then for some terms over the terms of I, their compositions

and definition by cases, say f1,... 

— - • • -~~~~~--~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —. -—- .— .
~~~~- - -~~~~~~~~~~~~~~ -- - •~~~~~*—~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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m

I V +(x,f1 ( x ) )
i=l

i s true.

J 
Roughly speaking, th is allows us to make the ex i sten ti al quan ti f iers

explicit In a quite constructive fashion. Wi thout the restriction on T the

I lenina is easily seen to be false. Since PT satisfies the hypothesis for T

and ~~~~~ is AE , S c P follows by (3), (4) as described above.

1
-
~ Proof C:

The application of the Kl eene-Herbrand-Gentzen Theorem can be replaced
V

by an application of the “pure ” Herbrand Theorem [Stl ] as in Proof B to

conclude PT F “S c P’ .
0

4

Notice that Proof A is nonconstructive and i nvolves compactness arguments.

The provability of As(A ,B) in this setting constitutes a “pure ” existence proof

for polynomial time algorithms . The provability of 
~~~~ 

in the setting of

1.~ 
Proofs B and C constitutes a constructive existence proof for polynomial time

• algorithms. (The apparent simplicity of Proof B compared to Proof A lies in

I the grea t power of Herbrand ’s Theorem , wh ic h has played a bas ic role in

var ious consis tency proofs in lo gic. The proof of Herbrand ’s Theorem is based

I on a very careful ana lysis of how I can prove ~ x)(3y)$(x,y)). However, the

running times of polynomial time algorithms produced in this way may be very

bad indeed. In fact, the best known bound is of order

2

2 (5)

• t

_____

.—----- — -.- -.

~
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I
I where the depth of nesting of the stack of 2’s Is bounded by the number of

inferences In the shortest proof of A5(A ,B) in PT. These upper bounds are

the best known to logicians , al though the lower bound literature is very

i sparse (Statman has obtained this polynomial as a lower bound {St] although

for a theory much less relevant to complexity theorists). It has been often

I noticed that, al though there are problems with very large pol ynomial

runn ing times , the onl y na tural ly occur ing problems in P have “smal l”  poly-

I nomial complexity . This gap has helped to sustain a certain feeling that

membership in P is sufficient for computational tractability . If indeed the

polynomial bounds (5) cannot be locally reduced , this is compelling evidence

I that P is much too extensive

This theorem above does not apply to arbitrary complexity classes . It

is apparently rather highly specialized for polynomial -like complexity classes.

At concre te levels , the theorem can be made to work for the following com-

plexity classes :

2poly-log

1’ l inear

~n1og~~ n

How about those problems for which lower bound proofs have already been

supplled?t The theorem does not hold for any elementary lower bound

(functions which consist of bounded nestings of exponentials do not have the

tThls issue was raised by R. E. Tarjan.

Sb
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I
1 closure properties required by Herbrand ’s Theorem). On the other hand , the

sen tence for those sets whi ch have prova ble none lemen tary lower bound s

I [MS ) are false’ in the standard model of I. and so the issue of independence

does not even arise for those’ problems . ~~ i short , the theorem cannot apply

to a class of lower bounds F If the functions In F are not closed under

I compositon and definition by cases, or if determinism and nondeterminism are

I 
not distinguished at complexity F.

By IdentIcal arguments we can show that PT is also related to ~ 
a NP.”

Let us say that a theory I can verify that NP is closed under complements

If for S t  NP

I I F- “S

I Coroiflary. PT can verify that NP Is closed under complements 1ff p NP.

1 By “checking” the theorem against the well-known problems which lie in

NP ~ coNP (e.g., Primes, Linear Progranminq, Breaking Public Key Crypto-

I system IRII), a great deal of Information can be obtained about the nonstandard

models whose existence is so Intimately connected to lower bounds. We have

the coroll ar ies :

I Corallary. If Primes is not in P, then there i s a non standard model of PT

In which primes need not have primitive roots [Pr).

I Corollary . If linear Progranming is not in P, then there is a nonstandard

model of PT In which for some point y and some point-set X -whose convex

hull does not contain y, there is no separating hyperplane through y [Do).

I Since both of these corollaries negate properties which hold in the

standard Integers , it is difficult to imagine the models In which they fail.

i 
_ _ _ _ _ _
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Moreover , the classical techniques for constructing nonstandard models do not

I work at the simple level of As(A ,B) . For example, forc ing Is a technique that

can be applied to formulas very high In the analytical hierarchy [Bu]. It Is

generally acknowledged by logicians that there are few techniques for con-

I struc ting such nons tandard models , yet the theorem cited above asserts that

a byproduct of any lower bound proof is an existence proof for such nonstandard

models.

I Finally, we note that although we are unable to extend these results to

Peono Arithmetic, we can extend the theory PT slightly to Include theories

with the property that all terms which grow slowly are easy to compute. Thus

we have corresponding independence results for theories of +, ‘ and poly-

nomially honest functions. For instance, suitable theories are theories of

I +,x,x~ and

- IV. Nonstandard Models

In this section we wIll describe a result, due to R. Solovay , show ing

that from the standpoint of constructing nonstandard models the theory PT is

almost as strong as Peano Ari thmetic (PA, for short). We begin wi th a

I digression on the nature of nonstandard models of PA and fragments of arithmetic.

I 
The class ical observation of Skolem was that a countable nonstandard

model of PA could be obtained simply by applying compactness to the set of

I formulas

- • 

‘ 
PA + (a>O) + (a>l) + (a>2) +

It is consistent to assume, then , that there exists a “nonstandard object” a

I which Is greater than all standard integers. Such a model *N contains N as

an Initial segment and has an ordering *< ex tendin g < to *N..N. The global

I 
- 

- - - -~~~~~ • .  ~-__
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14I I
structure of *N is remarkable. Define for x,y c *N x~y to mean that x and
y differ by a standard integer, i.e., for some n c N:

I x*_y a or y*_~ n.

I *N/~ Is a set of equivalence classes called blocks (each is order Isomorphic

- 

- to N). N is a block. Al so *< totally orders bl ocks like the rationals (i.e.,

I blocks are densely ordered). Nonstandard Integers cannot be described by
— • formulas of PA and any formula true of infinitely many integers must also hold

1
J Nonstandard models for fragments of arithmetic also contain Infinite ,

nonstandard objects but may have vastly simpler structure. Consider the

- 
- I (infinite) axiom system: for all n , m c N ,

I SUCm (O)+O SuCm(O) ,

sucm(O)+suc(suc m(O)) suc(suc~
’
~~(O)),- -

I’• suc ’~(O)xO = 0,

- 1. sucn(O)xsuc(sucm (0) )  = suc n(O)xsucm(O)+sucn(O),

r suc~(O) $ sucm(0), for m ~ n,

(~ c)(x < SUCm (O) 
~ V x = suc 1(0)),

— 

0<i<m

< sucm(0) v sucm(0) < x ) .

A nonstandard model for this theory Is

L *N N u {w} , w ~ N with *suc(w) 0,
- [ *suc(m) a suc(m) for all m c N and *~~~, *~~ defined by the following tables

I

[ 
—. • - - --- .- - --- ---
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X~w xcN x’w
y~w (A) yaw 0 0

~ 
YcN x+y ycN 0 xxy

I- As another example , take the open theory of suc ,pred ,+,’ and together

I wi th the Induction axiom

I I A(0) A (Vx ) [A( x ) -. A( su c(x ) )  -, A(x) ,  A open

A nonstandard *N consists of all nonnegative elements Q(t) of the ring of

~ I polynomials

~ I 
p-i

a ~P u /q 
+ b,

1 laO

Where b,p,q c N, a1 c D~ are al gebraic and Q(t) *< Q’ ( t )  is determi ned by

• letting t -
~ ~~~.

- I This model is quite important since It contains a nonstandard element t3v’E
such that

(t3~12~)
3 

= t3 +

so that Fermat’s last Theorem for n,a3 fails in *N (see [Sh) for details).

An important aspect of these weak fragments of arithmetic is that they

I can have “effective” nonstandard models, such as the two models described

above . That is , there is a recursive definition of ~~+ and ~ In terms of an

enumeration of the universe.

I The possibility of Independence from PT would be less intriguing if PT

L 
turned out to be one of these weak fragments. That Is , if a *N such tha t

~ ~ s(”~ 
could be found in which ~~+ and *~~ could be explicitly defined

by finite combinatorial means. In fact, PT has no effective nonstandard
3
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I
I models, so that proofs of lower bounds are necessarily connected wIth the

existence of nonrecursive objects. We now sketch Solovay ’s proof of this

I fact .

I 
We first need the corresponding result for PA, known as Tannenbaum ’s

Theorem (cf. [Co] and [EK]): let *N be a nonstandard model of PA; then

at least one of ~~+ and *~~ must be nonrecursive. The key idea of the proof

is to find a nonstandard object y which effectively encodes the infinite

J membership information regarding a nonrecursive set S. This can be done as

follows. It is possible in PA to define an RE nonrecursive set S. In *N,

1 S is ~S. If p1 is the ~~ pr ime in *N, the Chinese Remainder Theorem holds
for the system

y b1 mod p1, P1 < c £ (6)

I Let c t *t4~t4 and define the b1 in (~
) by:

I lo, if i c S
b1 =~

Information in y about ~ is decoded as follows: search *N for a z such that

PnZ = y (i.e., n c *S ) or PnZ =  y-l (i.e., it ~ *S). If *N is effective , this

procedure is effective and so ~ n N is a recursive set. It is not hard to

[ see that S c n N; a contradiction Is reached by constructing a specific S

which cannot be so extended.

Solovay’s argument begins by noticing that although PT is weaker than

[ PA, the only thing that PT lacks is the ability to “talk about” growth

arguments. But, let *N be any nonstandard model of PT and let c c *N...N be

j  a nonstandard integer. In the initial segment beneath c there is a submodel

~~~~~~~~~~~~~ -- -~~~• -“---~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
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with  enough “room” for the argument above to be carried out. To see how this

can happen let

I eN
c 

a (xt~*NIlog
kc ~~‘ x for all kcN}.

I *P4c is closed under polynomial time functions. For example suppose x c *N
~
.

i Then

logk~~c ~~‘ x , for all k N

and so

1og~c •.~ ~x 
~ x 2 .

Surprisingly, *Nc is also a model of PT+ exponential. This follows as above:
- 

i f x c *N C

~ x , for a l l  k ~ N.

• Thus

L loqkc *~ *‘. 2x

1. implIes 2x 
~ *Nc

Continuing In this manner, it Is possible to build a model *14 *N which

is closed under enough of the PA definable functions to let the proof of

Tannenbaum’s Theorem be carried out. But then the recursiveness of *N contra-
- dicts the nonrecursiveness of *M.

t V.. u D I  scuss ion

The results presented above show that lower bound proofs are exactly as
£ 

~ - -

-
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difficult as independence proofs. This in itsel f leads to interesting spec-

ula tions , but we feel the real force of these results lies In the link they

I create between the relatively new (and rather concrete) problems of computer

science and some classica l questions at the foundations of mathematics. We

will mention just a few possibilities which ensue from such a link.

I (1) It is possible that the methods of mathematical logic may help us

resolve such questions as whether or not P • NP.

J (2) Since lower bound proofs are equivalent to independence proofs,

it is possible that the lower bound statements themselves are

I independent from PA or similar theorems. We make the following

conjecture: “P NP” is independent of PT.

(3) Following the measuring of (2), a viable approach to lower bounds

mIght be to look for consistency with theories such as PA and PT.

(4) It is possible that a nontrivial lower bound will be proved, providing

an entirely new method of building nonstandard models for arithmetic.

(5) It is possible that I 
~ 

L\s(A
~
6) implying the existence of a poly-

nomial but quite useless algorithm for S.

(6) The main result of Section III together with Solovay ’s result comes

I very close to explaining the difficul ty in obtaining lower bounds:

any such proof must implicitly construct a noneffective system.

This makes it seem far less likely that the finite combinatorial

methods of the sort which have been applied iii extant lower bound

proofs will be able to prove nontrivial lower bounds are NP-complete

I problems.

H . 
-

~~~~ 
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